on statistical type convergence in uniform spaces
Authors
abstract
the concept of ${mathscr{f}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{f}}$. its equivalence to the concept of ${mathscr{f}}$-convergence in uniform spaces is proved. this convergence generalizes many kinds of convergence, including the well-known statistical convergence.
similar resources
On statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
full textStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
full textstatistical uniform convergence in $2$- normed spaces
the concept of statistical convergence in 2-normed spaces fordouble sequence was introduced in [17]. in the first, we introduceconcept strongly statistical convergence in $2$- normed spaces andgeneralize some results. moreover, we define the concept of statisticaluniform convergence in $2$- normed spaces and prove a basictheorem of uniform convergence in double sequences to the case ofstatisti...
full textProximal and uniform convergence on apartness spaces
The main purpose of this paper is to investigate constructively the relationship between proximal convergence, uniform sequential convergence and uniform convergence for sequences of mappings between apartness spaces. It is also shown that if the second space satisfies the Efremovic axiom, then proximal convergence preserves strong continuity. Mathematics Subject Classification: 54E05, 03F60
full textUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
full textOn I-statistical Convergence
In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۲، شماره ۴، صفحات ۹۷۵-۹۸۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023